CSE 369: Introduction to Digital Design Winter 2026

Exercise 1 — Parameterizing the Guessing Game

a) Parameterize the comparator module created in Section 2 for bit-width N instead of just 3
bits.

// Compares A to B, inputs of width N
// and outputs lets us know if it’s greater than (is_gt),
// less than (is_1t), or equal to (is_eq)
module comparator
(input logic [2:0] A, B,
output logic is_1t, is_gt, is_eq);
// subtraction result (intermediate)
logic [2:0] sub;
assign sub = A - B;

assign is_eq = "(sub[0] | sub[1] | sub[2]);
assign is_1lt = sub[2];
assign is_gt “is_eq & "is_lt;

endmodule // comparator

b) Parameterize the Guessing Game module for bit-width N and secret number S:

// Game to check user’s N-bit input guess against a hard-coded
secret #, S
// - SW[2:0] is the guess, KEY[0] allows input to be checked
// - LEDR[O] is <, LEDR[1] is ==, LEDR[2] is >
module guessing_game
(output logic [9:0] LEDR,
input logic [3:0] KEY, input logic [9:0] SW);

logic is_1t, is_eq, is_gt;

comparator number_comparator (
-A(8w[2:0]),
.B(3’b001),
.is_1t, .is_eq, .is_gt

)

assign LEDR[O0]
assign LEDR[1]
assign LEDR[2]

is_1t & "KEY[O0];
is_eq & “KEY[0];
is_gt & "KEY[0];

endmodule // guessing_game

CSE 369: Introduction to Digital Design Winter 2026

Exercise 2 — Creating a String of Lights

Finish the module called string lights that implements the system shown below (a string of 10
flip-flops/1-bit registers tied to the LEDRs) for the DE1-SoC.

LEDR[9] LEDR[8] LEDR[7] LEDRIS] LEDR[S] LEDR[4] LEDR[3] LEDR]2] LEDR[1] LEDR[0]

i inllalialiel il

L

I

)

)

..

e Use SW[9] as the reset, SW[0] as In, and KEY][0] as clk.

et

Y L]
A L
— O
—t

A

— Since we are using a KEY for the clock, no need for clock_divider.

e Hint: flip-flops can be module instances or inferred from an always_ff block.

// flip-flop that samples d on the rising edge of the clk
// and transfers it to q
module D_FF1 (output logic q,
input logic d, reset, clk);
always_ff Q@(posedge clk)
if (reset)
q <= 0;
else
q <= d;
endmodule // D_FF1

module string lights (output logic [9:0] LEDR,
input logic [3:0] KEY,
input logic [9:0] SW);
logic clk, reset, in;
// TODO: Finish creating the string of lights with or without the D_FF1 module!

endmodule // string_lights

CSE 369: Introduction to Digital Design Winter 2026

Exercise 3 — Sequential Logic Test Bench

Finish the test bench for string_lights.

module string lights_tb();
logic [9:0] LEDR;
logic [3:0] KEY;
logic [9:0] SW;

string lights dut (.*);

// TODO: Finish the test bench!
// Remember that KEY[0] is acting as a clock for this system.

endmodule // string lights_tb

