
CSE 369: Introduction to Digital Design Winter 2026

Exercise 1 – Parameterizing the Guessing Game

a) Parameterize the comparator module created in Section 2 for bit-width N instead of just 3
bits.

// Compares A to B, inputs of width N

// and outputs lets us know if it’s greater than (is_gt),

// less than (is_lt), or equal to (is_eq)

module comparator

(input logic [2:0] A, B,

output logic is_lt, is_gt, is_eq);

// subtraction result (intermediate)

logic [2:0] sub;

assign sub = A - B;

assign is_eq = ~(sub[0] | sub[1] | sub[2]);

assign is_lt = sub[2];

assign is_gt = ~is_eq & ~is_lt;

endmodule // comparator

b) Parameterize the Guessing Game module for bit-width N and secret number S :

// Game to check user’s N-bit input guess against a hard-coded

secret #, S

// - SW[2:0] is the guess, KEY[0] allows input to be checked

// - LEDR[0] is <, LEDR[1] is ==, LEDR[2] is >

module guessing_game

(output logic [9:0] LEDR,

input logic [3:0] KEY, input logic [9:0] SW);

logic is_lt, is_eq, is_gt;

comparator number_comparator(

.A(SW[2:0]),

.B(3’b001),

.is_lt, .is_eq, .is_gt

);

assign LEDR[0] = is_lt & ~KEY[0];

assign LEDR[1] = is_eq & ~KEY[0];

assign LEDR[2] = is_gt & ~KEY[0];

endmodule // guessing_game

1

CSE 369: Introduction to Digital Design Winter 2026

Exercise 2 – Creating a String of Lights

Finish the module called string lights that implements the system shown below (a string of 10
flip-flops/1-bit registers tied to the LEDRs) for the DE1-SoC.

• Use SW[9] as the reset, SW[0] as In, and KEY[0] as clk.

– Since we are using a KEY for the clock, no need for clock divider.

• Hint: flip-flops can be module instances or inferred from an always ff block.

// flip-flop that samples d on the rising edge of the clk

// and transfers it to q

module D_FF1 (output logic q,

input logic d, reset, clk);

always_ff @(posedge clk)

if (reset)

q <= 0;

else

q <= d;

endmodule // D_FF1

module string_lights (output logic [9:0] LEDR,

input logic [3:0] KEY,

input logic [9:0] SW);

logic clk, reset, in;

// TODO: Finish creating the string of lights with or without the D_FF1 module!

endmodule // string_lights

2

CSE 369: Introduction to Digital Design Winter 2026

Exercise 3 – Sequential Logic Test Bench

Finish the test bench for string lights.

module string_lights_tb();

logic [9:0] LEDR;

logic [3:0] KEY;

logic [9:0] SW;

string_lights dut (.*);

// TODO: Finish the test bench!

// Remember that KEY[0] is acting as a clock for this system.

endmodule // string_lights_tb

3

